Research interests

  • Quantile regression
  • Variable selection
  • Proportion data
  • Data visualization
  • Statistical programming

Master’s degree dissertation (in Portuguese):

Doctorate’s degree thesis (in Portuguese):

Publications:

  1. Santos, B. and Elian, S. (2012). Analysis of residuals in quantile regression: an application to income data in Brazil. Proceedings of the 27th International Workshop on Statistical Modelling (Arnost Komarek, Stanislav Nagy, editors), vol. 2, 723-728.
  2. Santos, B. and Bolfarine, H. (2013). A two-part model using quantile regression under a Bayesian perspective. Proceedings of the 28th International Workshop on Statistical Modelling (Vito M.R. Muggeo, Vincenza Capursi, Giovanni Boscaino, Gianfranco Lovison, editors), vol. 1, 200-205.
  3. Alencar, A. P. and Santos, B. (2014). Association of pollution with quantiles and expectations of the hospitalization rate of elderly people by respiratory diseases in the city of São Paulo, Brazil. Environmetrics. link.
  4. Santos, B. and Bolfarine, H. (2014). Bayesian analysis for zero-or-one inflated proportion data using quantile regression. Journal of Statistical Computation and Simulation. link
  5. Santos, B. and Elian, S. (2015). Influence measures in quantile regression models. Communications in Statistics - Theory and Methods. DOI: link
  6. Santos, B. and Bolfarine, H. (2015). Analysis of Brazil’s presidential election via Bayesian spatial quantile regression. Proceedings of the 30th International Workshop on Statistical Modelling (Herwig Friedl, Helga Wagner, editors), vol. 2, 239-242.
  7. Santos, B. and Bolfarine, H. (2018). Bayesian quantile regression analysis for continuous data with a discrete component at zero. Statistical Modelling. link
  8. Santos, B. and Kneib, T. (2018). Structured additive multiple- output noncrossing Bayesian quantile regression models. Proceedings of the 33rd International Workshop on Statistical Modelling, vol. 1, 253-258.
  9. Santos, B. and Kneib, T. (2020). Noncrossing structured additive multiple-output Bayesian quantile regression models. Statistics & Computing. link

Short courses:

  • Bolfarine, H., Santos, B., Correia, L., Martinez, G., Gomez, H., e Bazan, J. (2013) Modelos de regressão com respostas limitadas e censuradas. 13ª Escola de Modelos de Regressão, Maresias, SP.

  • Santos, B. (2017) Quantile regression: a classical and a Bayesian approach. Universidad de Antofagasta, Chile.